Long charged macromolecule in an entropic trap with rough surfaces.

نویسندگان

  • Yevgeni Sh Mamasakhlisov
  • Shura Hayryan
  • Chin-Kun Hu
چکیده

The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.

Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexib...

متن کامل

Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing.

Using molecular dynamics simulations in an explicit aqueous solvent, we examine the binding of fluoride versus iodide to a spherical macromolecule with both hydrophobic and positively charged patches. Rationalizing our observations, we divide the ion association interaction into two mechanisms: (1) poorly solvated iodide ions are attracted to hydrophobic surface patches, while (2) the strongly ...

متن کامل

بررسی میزان چسبندگی کاندیدا آلبیکنس به مواد مورد استفاده در ساخت بیس دنچرهای متحرک

Statement of Problem:The surface topography of denture base material is an important factor for the adhesion of Candida albicans and other microorganisms.Purpose: The aim of this study was to evaluate the adherence of Candida albicans to four types of denture base materials (Acropars acrylic resin, Meliodent acrylic resin, rough and smooth surfaces of Molloplast B).Materials and Methods: Seven ...

متن کامل

Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation.

Using Brownian dynamics simulations, we study the migration of long charged chains in an electrophoretic microchannel device consisting of an array of microscopic entropic traps with alternating deep regions and narrow constrictions. Such a device has been designed and fabricated recently by Han and Craighead [Science 288 (2000) 1026] for the separation of DNA molecules. Our simulation reproduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012